Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
An Acad Bras Cienc ; 96(3): e20230446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655920

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by right ventricular failure and diminished cardiac output, potentially leading to renal and bone impairments. In contrast, resistance exercise training (RT) offers cardiovascular and bone health benefits. This study aimed to assess the impacts of stable PAH induced by monocrotaline (MCT) and RT on renal morphometry, as well as bone morphometry and biomechanical properties in male Wistar rats. Four experimental groups, untrained control (UC, n=7), trained control (TC, n=7), untrained hypertensive (UH, n=7), trained hypertensive (TH, n=7), were defined. After the first MCT or saline injection (20 mg/kg), trained rats were submitted to a RT program (i.e., Ladder climbing), 5 times/week. Seven days later the rats received the second MCT or saline dose. After euthanasia, renal and femoral histomorphometry and femoral biomechanical properties were assessed. PAH reduced renal glomerular area and volume, which was prevented by the RT. While PAH did not harm the femoral morphometry, structural and mechanical properties, RT improved the femoral parameters (e.g., length, percentage of trabeculae and bone marrow, ultimte and yield loads). Experimental stable PAH promotes renal but not bone damages, whereas RT prevents renal deteriorations and improves the femoral morphological and biomechanical properties.


Assuntos
Modelos Animais de Doenças , Rim , Monocrotalina , Condicionamento Físico Animal , Ratos Wistar , Treinamento Resistido , Animais , Masculino , Condicionamento Físico Animal/fisiologia , Ratos , Rim/fisiopatologia , Rim/patologia , Treinamento Resistido/métodos , Hipertensão Arterial Pulmonar/fisiopatologia , Fêmur/patologia , Fêmur/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente
2.
Exp Biol Med (Maywood) ; 247(18): 1691-1700, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880885

RESUMO

The aim of this study was to verify the effects of moderate-intensity continuous (MICT) and high-intensity interval (HIIT) aerobic training on cardiac morphology and function and the mechanical properties of single cardiomyocytes in spontaneously hypertensive rats (SHR) in the compensated phase of hypertension. Sixteen-week-old male SHR and normotensive Wistar (WIS) rats were allocated to six groups of six animals each: SHR CONT or WIS CONT (control); SHR MICT or WIS MICT (underwent MICT, 30 min/day, five days per week for eight weeks); and SHR HIIT or WIS HIIT (underwent HIIT, 30 min/day, five days per week for eight weeks). Total exercise time until fatigue and maximum running speed were determined using a maximal running test before and after the experimental period. Systolic (SAP), diastolic (DAP), and mean (MAP) blood pressures were measured using tail plethysmography before and after the experimental period. Echocardiographic evaluations were performed at the end of the experimental period. The rats were euthanized after in vivo assessments, and left ventricular myocytes were isolated to evaluate global intracellular Ca2+ transient ([Ca2+]i) and contractile function. Cellular measurements were performed at basal temperature (~37°C) at 3, 5, and 7 Hz. The results showed that both training programs increased total exercise time until fatigue and, consequently, maximum running speed. In hypertensive rats, MICT decreased SAP, DAP, MAP, interventricular septal thickness during systole and diastole, and the contraction amplitude at 5 Hz. HIIT increased heart weight and left ventricular wall thickness during systole and diastole and reduced SAP, MAP, and the time to peak [Ca2+]i at all pacing frequencies. In conclusion, both aerobic training protocols promoted beneficial adaptations to cardiac morphology, function, and mechanical properties of single cardiomyocytes in SHR.


Assuntos
Hipertensão , Condicionamento Físico Animal , Masculino , Animais , Ratos , Ratos Endogâmicos SHR , Condicionamento Físico Animal/fisiologia , Ratos Wistar , Hipertensão/terapia , Miócitos Cardíacos/fisiologia , Fadiga
3.
J Sports Med Phys Fitness ; 61(7): 928-934, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33337109

RESUMO

BACKGROUND: This study evaluated the effects of two types of energy drinks (ED) intake in trained runners. METHODS: A double-blind randomized placebo-controlled clinical trial was conducted over 6 weeks. Participants and beverages were allocated by randomization. Twelve men 23±2.6 years, 177±3.4 cm, 74.4±5.5 kg, VO2max=59.8±5.5 mL·(kg.min)-1] ingested either a conventional energy drink containing carbohydrates and 3 mg·kg-1 of caffeine, (ED1), a sugar-free energy drink 3 mg·kg-1 of caffeine (ED2), or a carbohydrate-containing, decaffeinated placebo (PL) 40-minutes before an exercise protocol. Sprint time, rate of perceived exertion (RPE), respiratory exchange ratio (RER), blood pressure (BP), heart rate and plasmatic glucose were evaluated during the experimental protocol. RESULTS: Performance improved after consuming both ED (P<0.004 ED1 and P=0.001 ED2) with lower RPE (P<0.05 for ED1 and P<0.05 for ED2) compared to PL. Consumption of ED2 decreased RER values at 0-5 minutes and 40-45 minutes (P<0.001), and ED1 increased systolic BP (P<0.05) during exercise compared to PL. There were no differences in the evaluated parameters between EDs (P>0.05). CONCLUSIONS: Consumption of conventional or sugar free ED represents a valid ergogenic strategy to improve acute performance with reduction of RPE. However, intake of a conventional ED warrants caution, mainly because the effects on systolic BP.


Assuntos
Bebidas Energéticas , Substâncias para Melhoria do Desempenho , Cafeína , Estudos Cross-Over , Método Duplo-Cego , Frequência Cardíaca , Humanos , Masculino
4.
Rev Port Cardiol (Engl Ed) ; 38(9): 649-656, 2019 Sep.
Artigo em Inglês, Português | MEDLINE | ID: mdl-31812373

RESUMO

INTRODUCTION AND OBJECTIVES: Stem cell therapy and aerobic exercise are non-pharmacological therapies following myocardial infarction. The aim of this study was to test whether aerobic exercise training enhances the benefits of mesenchymal stem cell (MSC) therapy on remodeling of the extracellular matrix and fetal gene expression in the left ventricle of infarcted rats. METHODS: Myocardial infarction was surgically induced in six-week old male Wistar rats. Animals were divided into four groups: sedentary control (SC) and sedentary and stem cell treated (SCMSC); exercised (EX) and exercised and stem cell treated (EXMSC). Bone marrow-derived MSCs were immediately transplanted via the tail vein (concentration: 1×106 cells). Exercise training (five days/week, 60 min/day; 60% of maximal running speed) started 24 hours after myocardial infarction and lasted for 12 weeks. RESULTS: Exercise capacity was higher in exercised than in sedentary groups. Animals in the SCMSC, EX and EXMSC groups exhibited better cardiac function than those in SC. Collagen content was lower in the SCMSC, EX and EXMSC groups than in SC and skeletal α-actin expression was lower in EX and EXMSC than in SC. The α/ß-MHC ratio was higher in EX and EXMSC than in SC. The combination of therapies further reduced collagen content in the remote region of the infarct (∼24%) and skeletal α-actin expression (∼30%). CONCLUSION: Aerobic exercise training appears to enhance the beneficial effects of stem cell therapy on remodeling of the extracellular matrix and fetal gene expression in the left ventricle of rats with moderate infarction.


Assuntos
Ventrículos do Coração , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Condicionamento Físico Animal/fisiologia , Animais , Modelos Animais de Doenças , Ventrículos do Coração/metabolismo , Ventrículos do Coração/cirurgia , Masculino , Ratos , Ratos Wistar
5.
Clin Exp Pharmacol Physiol ; 39(2): 155-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22288490

RESUMO

Hypertension leads to electrophysiological changes in the heart. Chronic exercise induced by a treadmill-running programme (TRP) is considered a potential non-pharmacological treatment for hypertension and may have implications in heart remodelling. However, it is not known whether the TRP is able to improve the electrophysiological properties of the heart in spontaneously hypertensive rats (SHR). In the present study, we investigated whether TRP affects the electrical properties of left ventricular (LV) myocytes isolated from different layers of the LV wall of SHR. Male SHR were divided into exercised (chronic treadmill running for 8 weeks; CEX-SHR) and sedentary (SED-SHR) groups. Age-matched normotensive Wistar male rats served as controls. Action potentials (AP) and transient outward potassium current (I(to) ) were recorded in subepicardial (EPI) and subendocardial (ENDO) LV myocytes. In normotensive controls, AP duration (APD) was longer in ENDO cells than in EPI cells. This sort of transmural heterogeneity in the LV was not observed in sedentary SHR and was partially restored in SHR subject to chronic exercise. This partial recovery was associated with an increase in I(to) density in EPI cells but not in ENDO cells. The electrophysiological changes observed in the CEX-SHR group were not accompanied by either amelioration of systolic blood pressure or a reduction in heart hypertrophy. These findings imply that a TRP is able to improve the electrophysiological parameters of isolated cardiac myocytes in SHR. This sort of adaptation contributes to the overall improvement of heart physiology in this model.


Assuntos
Potenciais de Ação , Hipertensão/fisiopatologia , Hipertensão/terapia , Miócitos Cardíacos/fisiologia , Condicionamento Físico Animal , Função Ventricular Esquerda , Animais , Ventrículos do Coração/citologia , Masculino , Contração Miocárdica , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
6.
Cell Physiol Biochem ; 27(5): 479-86, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21691065

RESUMO

BACKGROUND/AIM: Nitric oxide (NO) modulates the expression of the chaperone Hsp72 in the heart, and exercise stimulates both NO production and myocardial Hsp72 expression. The main purpose of the study was to investigate whether NO interferes with an exercise-induced myocardial Hsp72 expression. METHODS: Male Wistar rats (70-100 days) were divided into control (C, n=12), L-NAME-treated (L, n=12), exercise (E, n=13) and exercise plus L-NAME-treated (EL, n=20) groups. L-NAME was given in drinking water (700 mg·L(-1)) and the exercise was performed on a treadmill (15-25 m·min(-1), 40-60 min.day(-1)) for seven days. Left ventricle (LV) protein Hsp content, NOS and phosphorylated-NOS (p-NOS) isoforms were measured using Western blotting. The activity of NOS was assayed in LV homogenates by the conversion of [(3)H]L-arginine to [(3)H]L-citrulline. RESULTS: Hsp72 content was increased significantly (223%; p < 0.05) in the E group compared to the C group, but exercise alone did not alter the NOS content, p-NOS isoforms or NOS activity. Contrary to our expectation, L-NAME enhanced (p < 0.05) the exercise-induced Hsp72 content (EL vs. C, L and E groups = 1019%, 548% and 457%, respectively). Although the EL group had increased stimulatory p-eNOS(Ser1177) (over 200%) and decreased inhibitory p-nNOS(Ser852) (ñ50%) compared to both the E and L groups (p < 0.05), NOS activity was similar in all groups. CONCLUSIONS: Our results suggest that exercise-induced cardiac Hsp72 expression does not depend on NO. Conversely, the in vivo L-NAME treatment enhances exercise-induced Hsp72 production. This effect may be due to an increase in cardiac stress.


Assuntos
Proteínas de Choque Térmico HSP72/biossíntese , Ventrículos do Coração/enzimologia , Atividade Motora/fisiologia , Miocárdio/enzimologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo I/biossíntese , Óxido Nítrico/metabolismo , Animais , Arginina/metabolismo , Western Blotting , Citrulina/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Fosforilação , Ratos , Ratos Wistar , Trítio/análise , Trítio/metabolismo
7.
J Int Soc Sports Nutr ; 8: 3, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21362194

RESUMO

BACKGROUND: The influences of creatine and caffeine supplementation associated with power exercise on lean body mass (LBM) composition are not clear. The purpose of this research was to determine whether supplementation with high doses of creatine and caffeine, either solely or combined, affects the LBM composition of rats submitted to vertical jumping training. METHODS: Male Wistar rats were randomly divided into 8 groups: Sedentary (S) or Exercised (E) [placebo (Pl), creatine (Cr), caffeine (Caf) or creatine plus caffeine (CrCaf)]. The supplemented groups received creatine [load: 0.430 g/kg of body weight (BW) for 7 days; and maintenance: 0.143 g/kg of BW for 35 days], caffeine (15 mg/kg of BW for 42 days) or creatine plus caffeine. The exercised groups underwent a vertical jump training regime (load: 20 - 50% of BW, 4 sets of 10 jumps interspersed with 1 min resting intervals), 5 days/wk, for 6 weeks. LBM composition was evaluated by portions of water, protein and fat in the rat carcass. Data were submitted to ANOVA followed by the Tukey post hoc test and Student's t test. RESULTS: Exercised animals presented a lower carcass weight (10.9%; P = 0.01), as compared to sedentary animals. However, no effect of supplementation was observed on carcass weight (P > 0.05). There were no significant differences among the groups (P > 0.05) for percentage of water in the carcass. The percentage of fat in the group SCr was higher than in the groups SCaf and ECr (P < 0.05). A higher percentage of protein was observed in the groups EPl and ECaf when compared to the groups SPl and SCaf (P < 0.001). The percentage of fat in the carcass decreased (P < 0.001), while those of water and protein increased (P < 0.05) in exercised animals, compared to sedentary animals. Caffeine groups presented reduced percentage of fat when compared to creatine supplemented groups (P < 0.05). CONCLUSIONS: High combined doses of creatine and caffeine does not affect the LBM composition of either sedentary or exercised rats, however, caffeine supplementation alone reduces the percentage of fat. Vertical jumping training increases the percentages of water and protein and reduces the fat percentage in rats.

8.
J Appl Physiol (1985) ; 107(2): 593-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19498092

RESUMO

The aim of the present study was to evaluate the Ca2+ handling and contractility properties of cardiomyocytes isolated from rats with high intrinsic aerobic exercise capacity. Standard-performance (SP) and high-performance (HP) rats were categorized with a treadmill progressive exercise test according to the exercise time to fatigue (TTF). The SP group included rats with TTF between 16.63 and 46.57 min, and the HP group included rats with TTF>46.57 min. Isolated ventricular cardiomyocytes were dissociated from the hearts of SP and HP rats, and intracellular global Ca2+ ([Ca2+]i) transients were measured. The [Ca2+]i transient peak was increased in the HP group relative to the SP group (5.54+/-0.31 vs. 4.18+/-0.12 F/F0; P

Assuntos
Sinalização do Cálcio , Tolerância ao Exercício , Ventrículos do Coração/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Esforço Físico , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cinética , Masculino , Fadiga Muscular , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Fatores de Tempo
9.
Rev. bras. med. esporte ; 13(5): 297-302, set.-out. 2007. graf, tab
Artigo em Português | LILACS | ID: lil-483319

RESUMO

INTRODUÇÃO: A creatina é um dos suplementos mais usados por atletas para incrementar a síntese protéica e aumentar a massa e força muscular. OBJETIVO: Investigou-se os efeitos da suplementação de creatina associada a um programa de treinamento de potência (saltos verticais) sobre a performance e a composição da massa corporal magra de ratos Wistar. MÉTODOS: Ratos Wistar adultos foram distribuídos em quatro grupos: SSC (sedentário sem creatina); SC (sedentário com creatina); ESC (exercício sem creatina) e EC (exercício com creatina). Os animais receberam água e ração ad libitum. Os grupos SC e EC ingeriam dose de creatina diariamente, adotando o procedimento de carga (0,430g/kg p.c. por 7 dias) e manutenção (0,070g/kg p.c. por 6 semanas). Os grupos EC e ESC foram submetidos a um regime progressivo de saltos verticais (5x10 saltos com 1 min de intervalo) em tanque com água, 5 dias/semana, durante 7 semanas. A performance foi avaliada pelo tempo de execução das 5 séries de 10 saltos verticais e a composição da massa corporal magra (músculos e ossos) foi avaliada pelas porções: água, proteína e gordura. RESULTADOS: A performance não foi afetada pela ingestão de creatina (p > 0,05). Os animais suplementados tiveram o percentual de proteína elevado e o de gordura reduzido (p < 0,05), independente do treinamento. Os animais exercitados exibiram maior percentual de proteína, e menor de gordura, além de menor ganho de peso corporal, comparados com os sedentários, independente da suplementação (p < 0,05). Não houve diferença para o percentual de água e consumo alimentar (p > 0,05). CONCLUSÃO: A suplementação de creatina não afetou a performance dos animais, mas alterou a massa corporal magra. A suplementação de creatina e o programa de treinamento de potência, de forma independente, elevaram o percentual de proteína dos músculos e ossos e reduziram o percentual de gordura, sem alterar o percentual de água.


INTRODUCTION: Creatine is one of the supplements most used by athletes in order to increase protein synthesis and consequently muscle mass and strength. OBJECTIVE: This study investigated the effects of creatine intake on the performance and lean body mass of Wistar rats. METHODS: Male Wistar rats were allocated into one of the four groups: sedentary without creatine (S); Sedentary with creatine (SC); exercise without creatine (E); and exercise with creatine (EC) and received water and chow ad libitum. Those animals in SC and EC groups ingested creatine daily (0.430 g/kg body weight for 7 days and 0.070 g/kg body weight for the following 6 weeks). Animals from E and EC groups underwent a progressive vertical jump regimen (5 x 10 jumps with 1 min. resting interval) in a tank filled with water at 30 ± 1ºC, 5 days/wk for 7 weeks. Performance was assessed by taking the time to perform 5 x 10 vertical jumps. The contents of water, fat and protein of the rat's muscles and bones were measured. RESULTS: The performance was not affected by creatine intake (P > 0.05). Animals supplemented with creatine had an increased percentage of protein and a reduced percentage of fat (P < 0.05), regardless the exercise training. Exercised animals exhibited a higher percentage of protein and a lower percentage of fat and gained less body weight when compared to sedentary animals (P < 0.05), regardless the creatine supplementation. There was no difference between groups for water content and food intake (P > 0.05). CONCLUSION: Creatine supplementation did not affect performance of the animals. Nevertheless, it altered the lean body mass. Creatine supplementation as well as the power training program, independently, raised the protein percentage of the muscles and bones and reduced the fat percentage, with no alteration in the water percentage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA